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High-Order Local Rate of Convergence 
By Mesh-Refinement in the Finite Element Method 

By Kenneth Eriksson 

Abstract. We seek approximations of the solution u of the Neumann problem for the equation 
Lu = f in Q with special emphasis on high-order accuracy at a given point xo E f2. Here Q is a 
bounded domain in RN (N >? 2) with smooth boundary, and L is a second-order, uniformly 
elliptic, differential operator with smooth coefficients. An approximate solution Uh is de- 
termined by the standard Galerkin method in a space of continuous piecewise polynomials of 
degree at most r - 1 on a partition Ah(Xo, a) of U. Here h is a global mesh-size parameter. 
and a is the degree of a certain systematic refinement of the mesh around the given point x0, 
where larger a's mean finer mesh, and a = 0 corresponds to the quasi-uniform case with no 
refinement. It is proved that, for suitable (sufficiently large) a's the high-order error estimate 
(U - Uh)(X0) = O(h2,-2) holds. A corresponding estimate with the same order of conver- 
gence is obtained for the first-order derivatives of u - Uh. These estimates are sharp in the 
sense that the required degree of refinement in each case is essentially the same as is needed 
for the local approximation to this order near xo. For the estimates to hold, it is sufficient that 
the exact solution u have derivatives to the rth order which are bounded close to xo and 
square integrable in the rest of U. The proof of this uses high-order negative-norm estimates of 
u - Uh. The number of elements in the considered partitions is of the same order as in the 
corresponding quasi-uniform ones. Applications of the results to other types of boundary 
value problems are indicated. 

0. Introduction. Let i2 be a bounded domain in RN, N > 2, with smooth boundary 
aQ and consider the Neumann problem to find u such that 

N a / au N au 
(0.1) Lu =- ax.(aija) + Ea3 ?+au=f inn, 

au N au (0.2) an = i a-a nj=0 on3ai2. 
a 

i,j1 'aj xi 

Here L is assumed to be uniformly elliptic with smooth coefficients, n = (nj) and n, 
denote the exterior normal and conormal to aQ, respectively. Assume also that the 
bilinear form 

N3v w N 
___ 

A(v,w) = E a..-a + ,E a.a w + avw dx 
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associated with L is coercive over H'(Q); that is, for some constant c > 0, 

A (v, v) C|||f1V Vv E- H'(93). 

In order to approximate u, let { Sh }, h small and positive, be a one-parameter 
family of finite-dimensional subspaces of H1(Q2) and define the Galerkin approxima- 
tion uh E Sh of u by 

(0.3) A(Uh,Vh) = (f ,Vh) VVh e Sh, 

where (-,* ) is the standard inner product in L2(Q2). Multiplication of (0.1) by Vh and 
integration by parts, using (0.2), shows that (0.3) holds for the exact solution u. 
Hence, 

(0.4) A(u - uh,vh) = 0 VVh E Sh. 

Therefore, we shall also refer to Uh as the "A-projection" of u. 
In this paper, Sh will consist of the restrictions to il of all continuous piecewise 

polynomials of degree at most r - 1 on a simplicial mesh, with h the maximal 
diameter of the simplices. From the approximation properties of Sh, the a priori 
estimate 

||u - UhIIH1(l) < Ch rlIUIIHr(Q) 

is easily obtained. Using the Aubin-Nitsche lemma (see [7, p. 137]), one can derive a 
sharper estimate in the L2(02)-norm: namely, 

||U - UhIIL2(U) < ChrIUllIHr(Q). 

Optimal, or nearly optimal, a priori error estimates can be attained also in the 
maximum norm, but require a more sophisticated analysis. With an additional 
nondegeneracy condition on the elements, one can prove that 

(0.5) I|U - UhIIL (Q) < C(ln(1/h))`hrIruIIr(6)W 

where r = 1 if r = 2, r = 0 for r > 2. In the case of N = 2 and for a special form A, 
a proof of this was given by Scott in [19]. For a survey on related results where other 
boundary value problems are also considered, see Nitsche [11]. 

In this paper we shall consider a simplicial mesh which has been refined in a 
certain way close to a given fixed point x0 E K2. We shall then be able to show 
higher-order convergence at xo. Our main result will be 

(0.6) C(h - Uh)(XO) l Ch2r-21UJI Wr (Q). 

This holds provided the degree of the prescribed refinement is such that the elements 
closest to x0 have diameters of order h2-2/r+e for some E > 0. In the case ? = 0, 
(0.6) holds with a logarithmic modification. It is clear that only the case r > 2 is of 
interest in this context, even though, when r = 2 and - > 0, (0.6) is slightly better 
than (0.5) as an estimate for (u - uh)(xO). We shall also demonstrate that if the 
refinement is such that the elements closest to x0 have diameters of order h 2+ e, then 
the same bound as in (0.6) can be obtained for the gradient of u - Uh: 

(0.7) I V(u - Uh)(XO)l < Ch2r2IIUIIWr(al). 
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This result is of interest also for r = 2. Next, by localizing the arguments to a 
neighborhood O' c 2 of x0, we derive the estimate 

(0.8) I(u - Uh)(XO)I < Ch2r2IIUII Wr(Q2O) + CIIU - UhII m O? 

where 11 denotes a weak negative norm to be defined in Section 9. Using 
known high-order error estimates for u -Uh in such negative norms, this will show 

(0.9) I(U - Uh)(XO)I < Ch2r {2IIUIWr(2O) + IIUIwr(s2)}) 

so that the regularity requirement on u away from x0 can be relaxed, with a high rate 
of convergence retained at x0. The corresponding results are shown for the gradient 
of u - Uh. Since (0.8) and its counterpart for the gradient require only local 
information on u - Uh, our results can also be applied in other situations where 
negative-norm estimates are known: for example, in connection with various proce- 
dures for treating the Dirichlet problem. The above results suggest that the Galerkin 
solution is a fairly local approximator of u and that pollution effects are moderate, 
at least for regular problems. 

The assumptions on the refinement are that the mesh size decays toward x0 
approximately as h times some power a of the distance, and that local inverse 
estimates hold. As is seen from the above discussion, the degree a of refinement 
needed for our results is essentially the same as is required for local approximation 
to this high order near x0. Hence, our results are sharp in this sense. Furthermore, it 
has been shown in Eriksson [5] that the refinement does not seriously increase the 
total number of elements in the partition, so that the amount of work needed to 
solve for uh is essentially the same as for a quasi-uniform mesh. 

One may argue that a weak point about the mesh-refinement procedure is that 
different grids are needed for points x0 at different locations. In practice, however, it 
is often the case that one is primarily interested in the solution only in the 
neighborhood of one specific point. For instance, in fracture mechanics one often 
knows a priori the point which is the most critical one for the structure and wants 
detailed information about the solution near this point. On the other hand, if more 
than one point is of interest, one may, of course, use a mesh which has been locally 
refined around each one of the points under consideration. Our analysis does not 
quite cover this case, but it is reasonable to believe that, under the appropriate 
assumptions, one then obtains O(h2r-2) convergence at all the centers of refinement 
simultaneously, using the same one mesh. Let us also mention that there exist 
commercial codes for automatic generation of meshes with local refinements like the 
ones we consider here. 

Mesh-refinements have previously been used in connection with elliptic problems 
in order to enable functions in Sh to fit known singularities in the exact solution 
properly. See, for example, Schatz and Wahlbin [15], where the singularities of u are 
caused by the corners of the domain. For a singular two-point boundary value 
problem, see Schreiber [18]. In Eriksson [5], [6] mesh-refinements were used in order 
to approximate Green's function to a high-order of accuracy. The idea in these 
papers is very much related to the present work. 
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As mentioned above, O(h2r-2) estimates are known in many cases for u - Uh as 
measured in a suitable negative norm; see Bramble and Osborn [3]. Pointwise 
superconvergence at mesh points is common for one-dimensional problems. In 
higher dimensions, O(h2r-2) error estimates have been obtained by various averag- 
ing procedures applied to an already existing approximation Uh of u; see Bramble 
and Schatz [4], Louis and Natterer [10], Thomee [20], and references therein. Here 
the post-processing procedure proposed by Bramble and Schatz is easy to perform, 
but requires a uniform mesh and can, therefore, in general, only give interior results. 
On the other hand, the method suggested by Louis and Natterer requires that a 
fundamental solution be a priori known, which, in practice, limits the possibility of 
application to the case of constant coefficients and no lower-order terms. 

The methods of proof employed here are reminiscent of those used by Schatz and 
Wahlbin in a series of papers: [13], [14], [15], [16]. Let W be the Green function for 
(0.1) and (0.2), and let 1h E S,t be its A*-projection. Then the starting point for the 
proof of our estimate (0.6) will be 

(u - uh)(xO) = A(u - Xh' C h). 

Here Xh can be any function in Sh, and therefore, by the approximation properties 
of Sh due to the refinement, the essential step in the proof will be to estimate -Wh 

in a weighted Wil-norm. An important tool for this will be the use of local 
Hl-estimates similar to those obtained by Nitsche and Schatz in [12]. In fact, to 
avoid difficulties at the point x0, we shall not use the exact Green function but a 
smooth approximation of it. 

An outline of the paper is as follows. Notation and some results on elliptic 
regularity are given in Sections 1 and 2. The exact hypotheses on the mesh-refine- 
ments are presented in Section 3, and some desired properties of the corresponding 
piecewise-polynomial spaces are presented in Section 4. 

In Section 5, the main result (0.6) is stated in precise terms and then proved. 
Section 6 is devoted to the proof of the weighted Wel-norm estimate mentioned 
above. The improved convergence (0.7) for the gradient is proved in Section 7. For 
completeness, a negative-norm estimate referred to in the later sections is derived in 
Section 8. The local estimate (0.8) is obtained in Section 9 and its counterpart for the 
gradient, in Section 10. 

1. Notation and Preliminaries. For a domain Q' c RN and m a nonnegatve integer, 

WqM(Q') will denote the usual Sobolev space with norm 

{ (ILVIIDviq(a,)} if 1 q < x, 
llVl Wt(Na') = <,l( 

I max IID'vIIL,(Q ) if q =x, 

where : = (.18... 138N) with 8i nonnegative integers, /3J = 1,8=1i. DI = D= 

(x* (a/axN)N, and 11IIL() is the norm in the Banach space Lq(Q'). We 
shall also use the seminorm I w W4(j2), defined as the corresponding norm, but with 13 
ranging over 1,81 = m only. For q = 2 we write W2m(Q')= Hm(Q'), and for the 
corresponding norm and seminorm, IIw2-, = IIJfm(a) = I*m,Q and 

I * IW2Z(W) = I I Im, 2, respectively. 
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The space of restrictions to n2' of infinitely differentiable functions on RN will be 
denoted C?(Q'), and CO((Q') will consist of all functions in C?(Q') with compact 
support in Q'. 

For m > 0, m an integer, we define the negative norms 1 and III Ill-m g by 

m j1S2, = sup (D,W)g' 

and 

IIVIm t = sup (V W))g 

where (v, w)g = Jva vw dx. 
Throughout this paper we shall let Q be a fixed bounded domain in RN, N > 2, 

with Ct boundary aQ. When Q' = Q we shall shorten the notation and write 

H'(Q) = Hm, 11 
- 

11,0 = 1I * 1lK, (*, -)s = (, *)4 etc. 
For Q' c 2 we shall consider the bilinear form Agu = A(-, )a, defined by 

(1.1) A(v,w)g2= {iai1a x +2a1x w+ aw}dx, 

where we require that the coefficients a j, a1, and a be functions in C??(Q) satisfying 

aij = aji. Although we shall mainly be interested in the form A = AgQ, we make the 
following assumption: There is a constant CA > 0 such that 

(1.2) A(v, v)g,' C>A 1a,1 V E H'(i'), VQ' c l. 

The reason for our interest in the bilinear form A is its connection with the 
Neumann problem for the second-order partial differential equation 

N a au N au 

= a.aia + La-? + au=f 
ij = 1 ax\ "ax1 j ax1 

Moreover, our main result will have applications to other boundary value problems 
for this equation, such as the Dirichlet problem. 

We shall later need the fact that the coefficients aij satisfy the following condi- 
tion: There is a constant CA > 0 such that 

N 

(1.3) 2 ai (x)AXixj > cAI VX ? RN, Vx EQ; 
i,j=1 

i.e., the associated differential equation is uniformly elliptic. This is, in fact, not an 
extra assumption on the coefficients aij, but follows easily from (1.2) with the same 
constant CA. Indeed, take Q2' = {x eQ 2: Ix - 25I < e} and v -=m1/2 (x -x) 
where me = fJ dx. Then, since aij are smooth by assumption, a simple computation 
shows that then for small E, 

N 

A(v, v)g = E ai(0)X1iX1 + o(?), 
i,j=l 

and 

||V|21Q = XI2 + 0(e2). 

Inserting this into (1.2) and letting e tend to zero yields the desired inequality (1.3). 
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Remark 1.1. Assumption (1.2) is unnecessarily restrictive for the purposes of this 
paper. In fact, the following global coercivity condition suffices: There is a constant 

CA > 0 such that 

(1.4) A(v, v)sQ> c'IIvII1'>, Vv E H1(Q). 

In Sections 9 and 10, where (1.2) is used for Q' * 02, it is possible to employ instead 
the modified bilinear form Ak,g'(v, w) = A(v, w),t + k(v, w)u, which satisfies (1.2) 
if k is sufficiently large (cf. Appendix 1 of [13]). 

We end this section with a list of some further notation and definitions. We shall 
write 

m(K)=f dx, diam(K)= sup Ix-yl, 
K x, yEK 

dist(K, K')= inf |x-yj, and Bd(y) ={x E RN: Ix-yI < d} 
xcK, yeK' 

Moreover, Pr(K) will be the set of all polynomials of degree < r restricted to K. 
Throughout the paper we shall use the letters c and C to denote various positive 
constants. For f and g two positive functions, we shall write f g if there are 
constants c and C such that f > cg and f < Cg. We also define the unit N-simplex T 
by 

T= xc RN: Xi > 0,i= 1,...,N, and x < 1. 

An arbitrary N-simplex is obtained by a nonsingular affine transformation of T. A 
face of a simplex is any one of the N + 1 (N - l)-simplices constituting its 
boundary. 

2. Elliptic Regularity. In this section we shall be concerned with the variational 
problem 

(2.1) A(G, v)Q, = (g, v),, Vv c H'(Q'), 

and with the regularity of the solution G in terms of g. 
By the boundedness of the coefficients, the form AQ, is continuous on Wp (Q') x 

q1(Q') for 1 < p, q < so and p-1 + q- = 1. In fact, by Holder's inequality, there 
is a constant CA, independent of Q', such that 

(2.2) A (v, w) 0, < CA IIvII w(Q )IIwIIJ w(a') V(v, w) e W1(Q') x W1(Q'). 

In particular, the form is continuous on H1(2'). We shall need (2.2) for p = 2 and 
p = x only. 

The results of the following lemma are special cases of the Lax-Milgram lemma 
(cf., e.g., Ciarlet [7]). 

LEMMA 2.1. Let the coefficients of the bilinear form A be such that (1.2) and (2.2) 
(with p = 2) hold. Then, for given Q' c 2 and g E L2(2'), there is a unique G E H1(W) 
satisfying (2.1). Furthermore, given any G c H1(Q') and a closed subspace S of 
H1(Q'), the Au,-projection of G on S is well-defined; i.e., there exists a unique Gs E S 
for which 

A(G-Gs, vs) s2 = ? Vvs S. 
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For Sk' with a sufficiently smooth boundary a i' we have the following well-known, 
elliptic, regularity result (cf., e.g., Schechter [17]). 

LEMMA 2.2. Let the coefficients of the form A be as in Section 1 and assume that 
(1.2) holds. Furthermore, let Q' c Q have a C? boundary aST, and let s > 0 be an 
integer. Then there is a constant C such that, if g E Hs(ST) and G is defined by (2.1), 
then 

(2.3) IIGIIs+2,Q < CIIgIIS'Q . 

We shall make extensive use of local estimates on G away from the support of g. 
We have the following lemma: 

LEMMA 2.3. Let the assumptions be as in Lemma 2.2, let s > 0, and let /B be any 
multi-index of length If1 < s. Then there is a constant C such that the following holds: 
Let g E L2(1'), let x E Q', and set R = dist(x, SUpp(g)). Then, for G defined by (2.1), 

(2 .4) |D8G ( X) | <. CR- N+2 
2-S11911L,(0 . 

Proof. The solution G of (2.1) is given by 

(2.5) G(x) = 9(x, y)g(y) dy, 

where V(x, y) is the Green function. It is known (cf., e.g., Krasovskil [9]) that 

(2.6) jD9(x, y) I < CIx - yjIN 2-s. 

Differentiation of (2.5) under the integral sign, application of H6lder's inequality, 
and (2.6) give 

JDflG(x)= f D!g(x, y)g(y) dy 

< ||Dx(x, . )|IL.(supp(g))I1gI1L1(1') < CR- N+2s 1LIL('), 

which was to be proved. 0 
We finally note that in all of this section we could have considered the adjoint 

problem as well. That is, for g E L2(0'), there is a G E H1(Ql') (in general, different 
from our previous G) such that 

A(v, G)Q, = (v, g)Q' Vv CE H('), 

and the regularity results above hold for this G as well. Moreover, the A *,-projection 
Gs E S of G is well-defined by 

A(vs, G-GS)Q,' = Vvs E S. 

3. Mesh-Refinement Around a Point. In this section we define certain partitions of 
S2 which are refined around a given fixed point xo E Q. To these partitions there will 
correspond finite-dimensional function spaces, to be introduced in Section 4. 

We shall divide S into simplices, which will be modified at the boundary g2, since 
the simplices cannot fit exactly the curved parts of as. For a small positive 
parameter h, we shall consider a family of such partitions defined as follows: Let S 
be covered by the union fh of the simplices fth, i = 1,..., I(h), where we require that 
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the ,jh have disjoint interiors and satisfy the standard assumption that, for i= 

1,... .,I(h), any face of Tih is either a part of a3h or corresponds exactly to a face of 
an adjacent simplex. As our partition we take the sets, with int(*) = the interior of 

h = int( h n E0i i 

The desired features of the partition are determined by the following two require- 
ments: For some fixed positive constants CS, CR, and CR, for x0 E E2, for a with 
O a < 1, and for h small and positive, we have 

(SA) m(Tih) > csdiamN(i), ih = 1,...,I(h), 

(RA) CRdiam(Tih) < h sup Ix - xoI < CRdiam( Tih), i = 1,... I(h). 
x E 

We use the notation LAh(xo, a) for partitions obtained as above and satisfying (SA) 
and (RA). 

The "shape" assumption (SA) implies, on the one hand, that the simplices do not 
degenerate, and, on the other hand, near the boundary, that a fixed minimum 
portion of each simplex is inside i2. This can be restated in the following equivalent 
but more useful way: There are fixed positive constants CS and CS and, for each 

T = a nonsingular affine mapping AT with AT(X) = BTX + b7, BT = (bij), BT' = 

(bj ), such that 

(SA)' csT C AT(T) C ATF = T, |bij| < Csdiam-'(T), lb'1I < Csdiam(T). 

The refinement assumption (RA) = (RA)xoa roughly says that an element at 
distance r from x0 has diameter approximately equal to hr'. Since i2 is bounded, the 
global mesh size is bounded by Ch. Elements close to xo are forced to have diameter 
of order h'l(' -a). Hence, the parameter a is a measure of the refinement. 

For a discussion of the possibility of constructing a mesh satisfying (SA) and 
(RA), we refer to Eriksson [5]. There, it is also shown that, for a fixed a < 1, the 
total number of elements in such a partition is proportional to h -N as in the quasi- 
uniform case. Hence, the size of the finite element matrix and, thereby, the amount 
of work required to solve for the Galerkin approximation are not seriously increased. 

For our proofs we shall need various subsets of i2. For integers j we define 

2J = 2 n B. where B. Bd,(xo), dj = 2-i, 

DJ = E2 n Aj whereAj =Bj \ Bj+, 

and 

Dk = Dk U ... U DJ+k, k = 0, 1, 2,.... 

In the technical work below we shall need to know that the local mesh size on Dj is 
small in relation to dj, in a sense to be made precise later. This will turn out to be 
the case for allj < J, if we define the functionJ, = J,(h) = Ji(h, a) by 

2-ji = C1h11(1-a) 

where the constant C, is chosen sufficiently large. The significance of the quantity J, 
will be clear in Section 4, where we shall also fix C1. Defining hj = hdja, it follows 
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easily from (RA) that, forj < J1, hi is proportional to the local mesh size on Dj, and 
that 

hjdj-l = hdj-' < h(C1h1/(1-a) a = 1/Cl - 

which also expresses, if C1 is large, the relative smallness of the mesh on Dj. We 
finally note that, since Q is bounded, the sets Dj will be empty forj less than some 

integerjl. 

4. Spaces. Inverse Estimates. Approximation Properties. Let Lh = hX(xo, a) be a 
partition as described in Section 3, and let r, with r > 2, be an integer. We shall 
denote by Sh = Sh(r, xo, a) the finite-dimensional space of functions in C(Q) which 
reduce to polynomials in Pr-l in each of the elements T = Th E A h. Moreover, if 
Q' c 92, the space of all restrictions to Q' of functions in Sh will be written Sh(Q'), 
and S,(Q') will consist of all functions in Sh vanishing outside S2'. We shall use the 
notation Xb for the obvious piecewise-polynomial extension to Rh of a function 

Xh E Sh; we use Sh for the corresponding space. 
The following inverse estimate is standard for interior elements. 

PROPOSITION 4.1. Let the partition Ah and the corresponding piecewise-polynomial 
space Sb be as above. Then there is a constant C2, depending only on N, r, cI, and Cs, 
such that, for 1 < p, q < oo, integers 0 < t < s < r, Vh E Sb, and any element 
T E Abh the following holds: 

(4.1) lVhl Wp(r) < C2 [diam(T)] t-s-N(q1 UbI W-(T) 

Furthermore, if m > 0 is an integer, there is a constant C3 = C3(N, m, c', Cs) such 
that, for vE Sh and any element , 

(4.2) lVhlIIo T <C3 diam ( m(T) IlVhll-,Im 
Proof. Let the affine transformation A T be as in Section 3. Sety = AT(x) = BTx + 

bT and define the operator a, by aTv(y) = v(A;1(y)) = v(x). Repeated use of the 
chain rule and (SA)' yields the estimates 

aDXh(X)l -< N"u'P[Cs'diam-'(T)]I'ulP E JD~a Tbh (Y) 

and 

Idet BT11 < N !CS diamN(T). 

A change of variables then gives 

(4.3) |Vh|Ws (T) < Cdiamv/PS(tT)|a TV h IWs(T)-' 

Similarly, we obtain 

lata hWqt(c' T) < C diamn /(T)lVhlWq() 

The desired estimate (4.1) now follows from the fact that, on the finite-dimensional 
space Pr,(T) and for s and t as considered, the -seminorm I * Ws(T) is dominated by 
Cl * l,(c'T) for some constant C = C(N, r, c'). 

Considering the equivalence of norms on Pri-(T), we obtain from (4.3), with 
s = 0 andp = 2, 
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From the seminorm inequality (4.3), we easily obtain, for any function w, 

IIwIIm,T < Cdiam N/2m((T)Ila,wimT. 

Hence, 

||Vh||O, < CdiamN/2 (T) sup (aVh, a,w) 
aIVwII7a,wEC1(cT) lIaTwIlmT 

Cdiam-m(T) sup (vh, W) < 
a,~~~;Iw c Co' (ct T) llwllm, 

< Cdiam-m(T)IIvhII|mT, 

with a constant C depending only on N, m, c' and Cs. This shows (4.2) and 
completes the proof. 0 

We shall say that Dh is a mesh domain if Dh = int(UWiM7i, for some index set M, 
and we denote by Dh the corresponding union of simplices Ti . We shall need the 
following local consequence of (4.1): Let D' and D" be domains such that D' c Dh 
c D// c VJ, where Dh is a mesh domain. Then there is a constant C = C(C2, CR) 

such that 

(4.4) ||Vh|l lDE < Ch- IlVhII0,D"- 

In fact, since diam(T) > chj for 1Th C DJ, we have, by (4.2), 

2IhtiD = 2 2 2 
IlVhill Dh = E ||IhtIl,rh < C h E IIVhII2Th 

'r c Dh 'rh cDh 

C2hi |IVhhIo,Dh, 

from which (4.4) easily follows. 
Together, (4.1) and (4.2) yield the following: Let D' C Dh C D" and assume that, 

for each Th c Dh, one has diam(T) ? c'h. Then there is a constant C = C(c', C2, C3), 
such that 

(4.5) ||Vh|lllD' < Ch m'liVhll-m,D'' 

To see this, we recall from Lemma 1.1 of [13] that 

Y., ||Uhll_M,T < IlVDh -m,Dh 

Th C Dh 

Hence, by (4.1) and (4.2), 

II.IDh E IIVhIIi,Th s< C2h-2(m?l) E 1 12 
1.hCDA 7^CDh 

< C2h-2(m?)IVhIIh-2 1 

which gives (4.5). 
We now turn to approximation properties. The following result was proved in 

Eriksson [51: 

PROPOSITION 4.2. Let Ah { r" } be a partition and Sh an associated piecewise-poly- 
nomial space as above. Then there are constants C4 and C4' depending only on N, S?, r, 
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c5, and Cs, and, for each 
1 

- E Ah, a neighborhood 0 of 
T 

with diam(O) S 
C4' diam(T), such that the following holds: For each v E L1 there is a Xh E Sh such that 
if 0 S I S m S randl S p S oo,andifv E Wpm(OT),then 

(4.6) liv - Xh I| W,p(T) < C4diamm (T)lIVliwrW(o ). 

We have the following consequence of estimate (4.6): 

COROLLARY 4.2. There is a constant C depending only on N, c5, CR, CR, C4, and C4' 
such that the following holds: Let v E L1(J2) and let Xh be given by Proposition 4.2. 
Furthermore, let D' c D" c 1j- and assume that 

(4.7) T n D'# 0 only if OT cD". 

Then, for 0 S I S 1 S m S rand v E Hm(D"), 

(4.8) liv - Xhil,D' S Ch7'iiVIim,D't 

Moreover, if v E W.n(D"), then 

(4.9) liV - Xhii wl (D') S Ch 1lIVII Wrn(D")- 

Proof. Let Dh be the smallest mesh domain for which D' h Dh, and note that 
then, for Trh C Dh, diam(Th) S Chi with C = C(CR). Since it is clear that there exists 
an upper bound, depending only on N, CS, CR, CR, and C4' for the number of T for 
which 0 initersects any given point, we have, by (4.6) and (4.7), 

liv - Xhi,D 11~2 I Iv 11Xhl,h 1| hl,D' E|V Xh l, Th 

Th E Dh 

Ch c2(m-l E im h< C. lIm,D D" 
Th e Dh 

which proves (4.8). Estimate (4.9) is proved in the same manner. 0 
Recall from Section 3 the definition of Jl, 2-J = ClhlAl-a), which was intro- 

duced to separate the treatment of the elements closest to xO from that of the 
remaining elements of the refined mesh. We shall now fix the constant C1 in a 
manner which will make (4.7) (and, hence, (4.8) and (4.9)) valid when needed in the 
sequel. More precisely, the proof of our crucial Lemma 6.2 below uses (4.8) and (4.9) 
forj S J1 when dist(D', 2 \ D") > c1di. In order to justify this, we may choose 

C1 = (4 . c1 C4' . c 

It is an easy computation to show that (4.7) is then satisfied forj < J1. If (4.7) holds, 
we also know that there exists a mesh domain Dh with D' c Dh C D", and, hence, if 
D' C D" c DJ, the inverse estimate (4.4) can be used. 

Note also that Proposition 4.2 implies that Xh vanishes outside a small neighbor- 
hood of supp( v). More precisely, if D = supp( v), we have 

Supp(Xh) C U - 

{T:otflD$ 0} 
We end this section with a "superapproximation" result. Again, we refer to 

Eriksson [5] for the proof. 
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PROPOSITION 4.3. Let Sh be as above, and let the constant C', be given. Then there is 
a constant C -C(N, r, a, cS, Cs, CR, CR, C,) such that the following holds: Let Dh be a 
mesh domain with Dh C D, and let 7 E C?(RN) be constant outside Dh (on each 
component of int( oh) \ Dh) and satisfy 

11, IIIwk < C d;k, k = 0, ... ,r. 

Then, given vh E Sh, there is a Xh E Sh such that supp(qvh - Xh) C Dh and 

(4.10) IIVlvh - XhIIl,Dh < ChdjIIvhIIl,Dh + Chjdj 2IIvhIIoDh. 

5. Main Result. High-Order Local Rate of Convergence. After the preparatory first 
sections, having defined the special finite-dimensional spaces Sh = Sh(r, x0, a) and 
listed some of their properties, we are now ready to state and prove our main result, 
Theorem 5.1. The theorem states that if u is a smooth function and uh E Sh(r, x0, a) 
is its A-projection or, equivalently, its Galerkin approximation, then 

(U - Uh)(XO) =O(h2r-2) 

provided a is sufficiently large-i.e., provided the underlying mesh is sufficiently 
refined close to x0. 

For a quasi-uniform mesh it is known that the pointwise convergence is of order 
O(hr) if r > 2 (with a logarithmic modification if r = 2). This was proved by Scott 
[19] for N = 2 and A(u, v) = (vu, Vv) + (u, v). Our result thus shows that refining 
the mesh around a point x0 considerably improves the rate of convergence of u -uh 

at this point, at least for r > 2. 

THEOREM 5.1. Let Q and the bilinear form A be as in Section 1. Furthermore, let x0 
be an arbitrary point in Q, and for h small and positive let there be given a family of 
partitions Ah(xo, ) of 2 as in Section 3. Finally, for an integer r > 2 let Sh = 

Sh(r, xo, a) be the corresponding finite-dimensional spaces as defined in Section 4. 
Then, for given a with (r - 2)/(2r - 2) < a < 1, there is a constant C such that, for 
u E Wr and uh E Sh, defined by 

(5.1) 0 A(u - Uh, Xh) =0 VXh ESh, 

the estimate 

(5.2) I(u - uh)(xO)I < Ch2r-2IIJuI 

holds. Moreover, C is independent of xo. For a = (r - 2)/(2r - 2), estimate (5.2) 
holds with C replaced by C ln(h1). 

Remark. Obviously, for u E W (Q), by continuous extension u(x0) is defined 
also for x0 E aU. 

Note that Lemma 2.1 insures that uh is well-defined by (5.1). Note also that the 
very existence of a function uh E Sh(r, x0, a) satisfying inequality (5.2), for a > 

(r - 2)/(2r - 2), is an immediate consequence of the approximation property (4.6) 
and the fact that diaml() < Chl/(l-a) < Ch(2r-2)/r for T close to x0 and such a's. 
The point of our theorem is that this high order of convergence holds for the 
A-projection Uh; i.e., that the high rate of convergence of x0 is not destroyed by 
" pollution" from the coarser mesh away from x0. 
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A brief outline of the proof of Theorem 5.1 is as follows. We first write 

(u - uh)(xO) = A(u - Uh, ) = A(u - Xh' 5- sh)' 

where = xo is the Green function, %h E Sh the A*-projection of C, and Xh an 
arbitrary function in Sh. By the continuity of A, we then have to estimate IIu - X hIW 

and 119 - IhiIw where, by the approximation properties of Sh, the first of these 
norms is bounded by Chrl. We thus wish to prove the same estimate for I I! -h II wi . 
In view of the singular character of 9, this might seem too optimistic, but the idea 
now is that the finer mesh close to xo will compensate for the singularity of C9 to keep 

- 9h small in all of U. To follow the above sketch of a proof, however, would 
require a larger lower bound for a than the one given in Theorem 5.1 (cf. the 
Corollary in [5]). In order to obtain (5.2) also for the smaller a's, we shall take 
advantage of the fact that the u - Xh part can be made smaller than h'-1 close to 
the point xo, since the mesh is refined there. Also, to deal with the singular behavior 
of C near x0, we shall use an inverse estimate and L2 duality to arrive at a situation 
where only smooth approximations of C have to be considered. More precisely, we 
have the following lemma, with the aid of which we shall then prove Theorem 5.1. 
For notation, see Section 3. 

LEMMA 5.2. Let the basic assumptions be as in Theorem 5.1. Then for given a, with 
(r - 2)/(2r - 2) < a < 1 and with J1 = J1(h, a) as in Section 4, there is a constant C 
and an integer J = J(h, a) < J1 such that the following holds: Let xo E i0, and let 
g E CO?(TO) be such that lughlo = h-/( 2a). Define G E H1 and Gh E Sh = 

Sh(r, xo, a) by 

(5.3) A(v, G) = (v, g) Vv E H1, A(Xh, G-Gh)=O VXh Eb^ 

Then there is a constant C independent of h such that 

(5.4) E hJIG - GhIIw1(D ) + hr1JIG - GI Ch2r-2. 

For a = (r - 2)/(2r - 2), estimate (5.4) holds with C replaced by Cln(h-1). More- 

over, C is independent of xo. 

In order to understand the normalization of g, one may think of g and G as 
smooth approximations of the Dirac measure at xo and the corresponding Green 
function, respectively. We devote all of Section 6 to the proof of Lemma 5.2, and we 
proceed now to prove (5.2). 

Proof of Theorem 5.1. By a sequence of standard arguments, using the triangle 
inequality, the inverse property (4.1) with s = t = 0, p = ox, and q = 2, Holder's 

inequality, and the assumption diam(TO) - h'1(7-c), we have, for any Xh E Sh, 

I(u - Uh)(XO)I < I(u - Xh)(X0)I + I(Xh - uh)(x0)I 

< I(u - Xh)(XO)I + CdiamN/2(To)IIXh - UhIIL2(T0) 

(5.5) < {(u - Xh)(XO)I + C;diarmN (O)Iu _XhIIL2(T0) 

+ Cdiam /2 (To)IIu - UhIIL2(T0) 

< CIIU - 
XhIIL() +?Ch )IIU - UhlIL2(T0). 
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By Proposition 4.2 there is a Xh E Sh such that 

IIu - X hilL. (TO) Cdiamr(To)IIuIIw,, 

which, by the refinement assumption diam(T0) < Chl(l - ) and the choice of a > 

(r - 2)/(2r - 2), can be continued to 

(5.6) IIu - XhIILr(To) < Cdiamr(ro)IJulIw, < Ch2r-21uIIW. 

It now remains to estimate IIu - UhLL2(To). By L2 duality we have 

(5.7) IIU - UhIIL2(To) = SUp(U - Uhl g)h 

where the sup is taken over all g as in Lemma 5.2. With G, Gh, and uh defined by 
(5.3) and (5.1), we can write, for any Xh e Sh, 

(5.8) (u - u, g) = A(u - Uh, G) = A(u - Uh, G h- ) = A(u - Xh, G-G)- 

Let the integer J be as in Lemma 5.2. Using Corollary 4.2, we see that there is a 
Xh E Sh such that, by the continuity of A, 

A(u - Xh, G GO) 

C E 
4 IIU- Xhll W(D1)IIG - GhIIw (D>) 

j < 

(5.9) + IIu - Xhll w(+)IIG - GhII(g,,) 

S Cllull 
w 

- GhIIw (D1) + h7 IIG - GhWIw(J+X)} 

The theorem now follows from (5.5) through (5.9) and by Lemma 5.2. C1 

6. Proof of Lemma 5.2. Let us first recall from Section 3 the notation dj =2 j, 
h1=hdya, lj = Bd(xO) n 0, Dj = gj\ ij+, and Djk = Dj_kU UDj. For 
given a with 0 < a < 1, we have also defined the function J1 = J1(h) by 2-j' = 

Cjh'1(1 -a) where the constant C1 was chosen large enough to imply, for all]j < J, 
the relative smallness of the mesh on Dj necessary in order to derive, under the 
assumption dist(D', 2 \ D") > c,dj, the local inverse estimate (4.4) and the ap- 
proximation properties (4.8) and (4.9). It was also pointed out that, for j < J1, the 
mesh size on Dj is proportional to h and h1d;71 < C. It follows immediately from 
our definitions that 

(6.1) dj= 2dj,, and hj= 2Ghj+,. 

This will be used frequently throughout the proofs, sometimes without explicit 
mention. 

For the proof of Lemma 5.2, we shall need the following two preliminary lemmas. 
Lemma 6.1 improves the standard H1-error estimate 

IG - Ghhll < ChllgIIO 

for the special G considered. Lemma 6.2 shows local H1-estimates for G - Gh 
without any specific assumptions on G. Proofs of these lemmas can be found in 
Eriksson [5]. Just take as the form in [5] the adjoint of A. (Cf. also the proof of 
Lemma 9.2 below.) 
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LEMMA 6.1. For given a, with 0 < a < 1, there is a constant C such that the 
following holds for any integer J < J4: Let g E L2 be supported in T, where '0 contains 

xO. Define G by 

(6.2) A( v, G) = (v, g) Vv E H1, 

and let Gh E Sh(r, xo, a) be the A*-projection of G. Then, for E = G - Gh, 

(6.3) jEjj14 Chjjlgjjo. 

LEMMA 6.2. For given a with 0 S a < 1 and r > 2, there is a constant C such that 
the following holds for any integer j < J4: Let G E Hr(DJ), and let Gh EC- = 

Sh(r, xo, a) satisfy 

(6.4) A(Xh, G-Gh) = O VXh E Sho(Dj) 

Then,forE = G - Gh, 

(6.5) IIEII1,D D Ch' 1 GIr, Di + CdjT-1IIEII0 D1. 

Proof of Lemma 5.2. For fixed a with (r - 2)/(2r - 2) < a < 1, we shall prove 
the existence of a constant C and an integer J < J. such that 

(6.6) E h J-EJI + hr-1IEI iW(J 1) <Ch2r-2 
jVJ~~~~~ 

where E = G - Gh is defined as in Lemma 6.1 with the additional normalization 
jjgljj = h- NA2-2c). By the refinement assumption diam(TO) h- h"l) and the nor- 
malization of g, we have, by Schwarz' inequality, 

(6.7) 11gIL,(,ro) < diam /2(r)||g||0 , C. 

The choice of the integer J < J. will be made later on in the proof by fixing a 
constant C* (sufficiently large) and defining J by the inequalities 

(6.8) 2-J = dJ < C* hl/(-a) < 2dj = 2-(J-1) 

By the definition of hi we then also have 

(6.9) hj <, C*h'lA") < 2ahj 

We now set out to prove (6.6) by first estimating the term associated with S2J+1. 

By using, in turn, Schwarz' inequality, Lemma 6.1, the normalization of g, (6.8), and 
(6.9), we have, for (r - 2)/(2r - 2) < a < 1, 

h rI |E|I wiu+1 < hr-1,4 N121EII1 < ChrdJN1211gllo 

(6.10) < Chd/2hN/(22a) CCN2 r 

CC N12 +arh r/(la 
C 
C(C*)h 2r 2 

which is the desired estimate. 
In order to get a similar estimate for the sum in (6.6), we first apply Schwarz' 

inequality to each term to obtain 

(6.11) E h; IIEIIWI(Dj) < C ? hyjd j/21E111,D.j 
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We shall proceed to show, with 

S = E hr-ldN/211E11 Dj', 
jSJ 

that, provided C * is chosen sufficiently large, we have 

(6.12) S < IS + Ch2r-2. 

This would imply S < Ch 2r-2 and, thus, together with (6.11) and (6.10), show the 
desired estimate (6.6). To complete the proof of Lemma 5.2, we shall also prove that 
(6.12) holds for a = (r - 2)/(2r - 2) if C is replaced by Cln(h-1). Moreover, as is 
easily seen by tracking constants, we shall prove (6.6) with C depending only on 
N, 2, A, a, r, and given constants. That is, the final claim of Lemma 5.2 will be 
fulfilled. 

In order to show (6.12) we first split the sum S and then make use of Lemma 6.2. 
We have 

S= E + E =Sl + hr-1d7 /2IIElD 
j=J-2 jSJ-3 j J-3 

< S1 + C E hj2r- 2djN/2I IGII r, D 

(6-13) j<J-3 

+ C hE h- 1,4 N/2 -'IEIIO,Di 
j<J-3 

Sl + S2'+ C5 E h -d,/2llE110,1jj 
.jJ -2 

where we have also used (6.1) in the last step. 
The sum S1, only consisting of three terms, has essentially already been estimated. 

In fact, by (6.1) and part of (6.10), we have 

(6.14) S1 < 3h7i?d7 |IIEII1 < Ch 1d 2IEJI < C(C*)h2r2. 

For the estimation of S2 we first note that, since Dj and supp(g) are separated by 
a distance of order dj, we have, from Lemma 2.3, 

IIGIlwr(Dj) , CdJ7N LIj gj (TO). 

By H61der's inequality and (6.7), this shows 

(6.15) IIGIIr,D} < CdJ /I IGIIWr(D) < Cd- r 

Letjl be the smallest integer for which Dj + 0. Using (6.15) we obtain 

S2 < S h2r-2 J.X/2lGrD C E h 2r-2d 2-r S 2 < 
C 

2 .i .i 
(6.16) jC J-2 J c ]d 

C2r-2 Edci(2r-2)+2-r < c2_ 

J =J= 

where we have used that a > (r - 2)/(2r - 2) in the last step. In the case a = 

(r - 2)/(2r - 2), all terms in the sum equal 1, and so, since by (6.8) the number of 
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terms is proportional to ln(h-I), we have 

S2 < Cln(h-l)h2r2 

It now remains to show that 

(6.17) C5 h rj dIV2- 11EIIO D '< iS + ch2r-2 
j6J-2 

For this we first write, by duality, 

(6.18) IIEIIO,D = sup(f1, E), 

where the supremum is taken over all functions fj supported in Dj and of unit 
L2-norm. For such we define Fj by 

(6.19) A(Fj, v) = (fj, v) Vv e H1 

and note that new applications of Holder's inequality and Lemma 2.3, together with 
the normalization offj, give, for i ] j - 1, j, j + 1, 

IIFjllr,D -< Cdi/ I2IFj II W (D,) CdDi 2d - N+ IIf iiL 
(6.20)Cdl2 N2 2-r < CdI/2dT /2?2r. 

By (6.19), the definition of E, and the Hl-continuity of A, we have, for arbitrary 

Xh h 

(fj, E) = A(Fj, E) = A(Fj - Xh, E) 

s< CjjF) - Xhl,lbD2IIEIIl,D2 + C E - XhIIl,DiIjEjl1,Di 

(6.21) i*j- 2,...,j +2 

+ CIIEII SQJ 1IIF? - 
XhIIljj+l 

= II + I2 + I3 

We next intend to estimate I,, I2, and I3 separately, with Xh approximating Fj as in 
Proposition 4.2. 

By the approximation property, (4.8), elliptic H2-regularity, and the normalization 

of fj, we first have, for II, 

I < CjjEjjj,D2hjfj12 < CjjEjj1,2hjfIfjfI0 < ChjjjEjjj,j2. 

We next use (4.8) and (6.20) to estimate I2. We have 

'2 < C EI IIEIIl Dih'1IIl?llr,D! 
i <J 

i*j- 2,...,j+ 2 

C I IEII 1Dh ir- ld N1/2d - 
N/2 + 2 - r 

iSJ 
ioj - 2,. . .,j +2 

Cdj1N/22 +2-r E h- ld!72IIEII D Cdj N/2?2-rS. 

i<J 

It remains to estimate I3. Since we shall only consider Fj with j J J-2, i.e., with 

supp(fj) separated from QJ, we use Lemma 2.3 to derive 

I|Fj|l|r < Cdj/2djN/2?2r 
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From this, the approximation property (4.8), and again using part of (6.10), we have 

I3 < C||E||u,+h 
r , 

< CIIEI 1 Q h7r-ildN4/2dj .N/2+2-r 

Cdj-N/2+2-rh-1dN/2E1 C(C)h2r-2d- N/2 + 2 - r 

Collecting (6.18), (6.21), and the above estimates for I,, I2, and I3, we have shown 

(6.22) IIEIIO,D1 < ChJIIEIIi D2 + Cd-N/2+2-rS + C(C*)h2r-2dN/2+2-r. 

Estimate (6.22) inserted into the sum in (6.17) gives 

C5 hr-1djN2 -111E110D 

< C E ( hIdJTl ) hy-dJN/2IIEIL Dj 

j J 

(6 .23) Jr+CS E h7r-ldjl-r + C(C*)h 2r- 2 E h r-yldl - r 

< C6 (max (hjdI l') + E hy jdJ-) S + C(C *)h22 E hi dyj, 

where the constant C6 is independent of the choice of C*. As is easily seen from 
(6.23), all that remains in order to obtain (6.17) is to show that, for a suitable choice 
of C*, we have 

(6.24) C6 (max (hjdji.) + E f r1 -r) h<2 

By the definition of h1, the assumption a < 1, (6.8), and for C sufficiently large, 
we have 

(i) max(hjd; 1) = max(hd-l) = hdja < 2 - E 
jJ cr" 4C6~ 

Since a < 1 and r > 2, we have, again for C* sufficiently large, 
E hr-1dJ = hr-1 E da-l)(r-1) - hr-lda-l)(r-l)( -2(a-1)(r-1))1 

jSJi j<J 

(ii) 2(1-a)(r 1)(1 2(a-1)(r-1))-1 1 

C(1- a)(r -1)< 4C6 

where we have again used the right inequality of (6.8). Now fixing the constant C* 
so that both (i) and (ii) hold, we have obtained the desired inequality (6.24) and, 
thereby, finally proved Lemma 5.2. o 

7. High-Order Local Convergence for Derivatives. In this section we shall prove 
that, for a sufficiently large, we have O(h2r-2) convergence at x0 also for the 
first-order derivatives. More precisely, we have the following result: 

THEOREM 7.1. Let Q and the bilinear form A be as in Section 1. Furthermore, let x0 
be an arbitrary point in Q2, let r > 2 be an integer, and for h small and positive let there 
be given a family of partitions Ah(xo, a) of Q and the corresponding finite-dimensional 
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spaces Sh = Sh(r, xo, a) as in Sections 3 and 4. Then, for given a with 1/2 < a < 1, 
there is a constant C such that, for u E W:,r and Uh E Sh, the A-projection of u, the 
estimate 

(7.1) IV(U - Uh)(Xo)I l Ch rIUIIw 

holds. If a = 1/2, estimate (7.1) holds with C replaced by Cln(h-1). Moreover, the 
constant C is independent of xo. 

For the proof we shall need the following technical result: 

LEMMA 7.2. Let the element T, the simplex T', and the affine transformation A, satisfy 
assumption (SA)' of Section 3, and let r > 2 be an integer. Then there is a constant 
C = C(N, r, c', Cs) such that, for any p E Pr(T)' we have 

IIPIILX,r(T) -< CSUP(P, g), 

where the supremum is taken over all g E CO( T) with 

(7.2) diaM/2 (T) lgill + diaM(N+2)/2( X) lglll 

Proof. Define, as before, the operator a7 by a7v(y) = v(A;-1(y)). Then 

IIPIILO(T) < IIPIIL( = IIaTPIILP(T)- 

With c' given in assumption (SA)', let B2C'(y') be the largest ball contained in cIT, 
and set B = Bc,(y'). By the equivalence of norms on Pr(T), there is a constant 
C = C(N, r, c') such that 

IIP'IIL.(T) -< CllP'llL(B) VP E Pr 

Let M be a fixed function in CO'(B1(O)) satisfying 

(p', M) = p'(O) VP E Pr 
(cf. Hilbert [8]) and set M,(y) = c'-NM((y - z)/c'). Then 

(p', Mz) = p'(z) Vp E Pr, 

and, hence, 

IIP'IIL(B) = SUP (P M) Vp' E P 
zeB 

Noting that a,p E Pr, we now obtain 
IIPIILX(T) < Csup (aTp, Mz) = Csup (p, Idet BIa7 'M,) 

z e B zeB 

where we have changed variables in the last step. To prove (7.2) it is then sufficient 
to show that, for some (small) constant 8, the functions g = 3ldet BlaT-M,, for 
z E B, satisfy g E CO&(T) and (7.2). However, since M E CO&(B1(O)), it follows from 
the definitions of B, Mz, and a-' and from (SA)' that 

g = 3ldet B la-M, E CoX(T). 

Moreover, since M is bounded, so is a -M,, and hence by Holder's inequality and 
for suitable 8's, 
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Similarly, 

diam(N 2)/2 (T)Igjll, T 3<,CdiamN l(T)Idet B7j IIa-MjIw 

<, CS diam( T) ||aT-lMAl JJ wi<1/2, 
which completes the proof. OJ 

Proof of Theorem 7.1. We shall prove (7.1) with v replaced by any 3. = a/axj. Let 
xo e - We shall use Lemma 7.2 with T = To and p = a(Xh - uh) E r-l() 
Using the triangle inequality, Lemma 7.2, and Holder's inequality, we then have, for 
any Xh E Sh, 

I(8jU - ajUh)(XO)l < l(aju - ajXh)(XO)l + V(ajXh - ajUh)(XO)l 

S |(ajU - ajXh)(xO)l + CSUP(3jXh - ajUh, g) 

3< ajU - ajXhilL (ro) + CSUP(ajU - ajXh, g) 

+Csup(a1u - ajUh, g) 

< |lajU - ajXhIIL (,r) + CSUPjajU - 
a8jXhIL.(TO)Ig9IL1(TO) 

+Csup(8ju - 
ajUh, g), 

where the supremum is taken over all g E CO&(TO) with 

diamN/2(TO) lgli0 + diam( 1. 

Since, for a > 1/2, the refinement assumption (RA) implies 

diam(To ) < Ch I/(I - a) < Ch 2 

Proposition 4.2 yields a Xh E Sh such that 

(7.4) I - < C diam 1 (o)|Iu IIWr < Ch2r-2IIUI IW|. 

Moreover, by Schwarz' inequality and the normalization of g, we have 

(7.5) 11911L,(,) < diam/'( T ) jgjjo < 1, 

and, hence, the first two terms on the last line of (7.3) can be estimated in the desired 
way. In the last term we first integrate by parts. We then put g' = -ajg and define 
G' E H1 and G' e Shby 
(7.6) A(v, G') = (v, g') Vv E H1, A(Xh, G' - Gl) = 0 VXhe Sh 

Following the proof of Theorem 5.1 with g, G, and Gh replaced by g', G', and G,, we 
then obtain 

(aju - ajuh, g) = (u - uh, -ag) = (u - Uh, g') = A(u - Uh, G') 

=A(u -Uh, G' - G') = A(u-Xh G' - G) 

< C 2 jj||u - XhIWlw(D )JIG - Gl IWI(Dj) 
jJJ 

(7.7) 
+ IIU - Xhll Wl ((,+,)lIG 

- 
Gh1 |W(n,+o)} 

< ClIullh { 
hywjJGr 

- 
G'lI wl1(D) + h 

-111G'-G|IIW1l(QJ?1)} 
. 
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The desired estimate now follows from (7.3)-(7.7) and by Lemma 7.3 below. The 
independence of xo of the constant C is easily checked. This completes the proof of 
Theorem 7.1. 0 

LEMMA 7.3. Let the basic assumptions be as in Theorem 7.1. Then for given a, with 
1/2 < a < 1 and J1 as before, there is a constant C and an integer J < J1 such that the 
following holds: Let xo E -0 and let g E CO (T0) satisfy 

diam (To) llgll0 + dia 1. 

Setg' = -aganddefineG' E H1 and Gh E Shas in (7.6). Then forE' = G'-G 

(7.8) E hj-1|E'|WI(D) + hi1IIE'II w1(, 1) < 

If a = 1/2, estimate (7.8) holds with C replaced by Cln(h-1). 

Proof. We first estimate the term associated with QJ+1. As in the proof of Lemma 
5.2, we shall choose J S J. such that 

dj < C*hl/(l-a) < 2d, and hi S C`h1/(l-a) < 2'h 
where the constant C * will be determined later in the proof. Then, by the refinement 
assumption, hj, dj, hl1Al-0), and diam(TO) are all of the same order. Hence, using 
Schwarz' inequality, Lemma 6.1, and the bound for g, we have, for a > 1/2, 

(9)hJ IIE'l wII(uJ+,) < hr-ldjN/2IIE'lll < Ch r-ldjN/2hjllgtill 

c*)(r - )/(l - e) iM(N+2)/2(7To)llglll C *)2r-2, 

which shows the desired estimate for this term. 
We now proceed to estimate the sum in (7.8). Setting 

S = E h r-ldJN/2IIE 'll 1DX 
jVJ 

we have, by Schwarz' inequality, 

(7.10) h IIE'll W1(D CS 
j J 

We shall first show that 

(7.11) S Ch2r-2 + C hJ2r- 2d N/2 IG'IrD 
j<J- 2 

We shall again use the obvious equalities (6.1), dj = 2dj+1, and hj= 2ahj+?. In 
order to estimate the three last terms of S, we shall use part of (7.9), and to the rest 
of the terms we apply Lemma 6.2. We then have 

J 

S5= E + E < 3h rl?dji2IlE'hll + E hr-ldj/2JE'llJl ,D 
j=J-2 j6J-3 j<J-3 

Ch7r-ld'N2llE'll + C E h 2r-2dJV/2llG'lIr 

(7.12) +C E h r-ldN12 - l'IIE10,Di 
j<J- 3 

S C(C,)h2r- 2 + C E h2r-2d /2IIG 'Ilr,D 
j<J-2 
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In order to estimate the last sum, we proceed, as in Section 6, by first estimating 

IIE'lloD Following (6.18)-(6.21), we obtain three terms, I' I2, and I', which have to 
be estimated. The terms I1 and I2' are bounded exactly as in Section 6 but for the 
additional "primes". In order to bound I3 we use part of (7.9) instead of (6.10). As 
in Section 6, if C * is sufficiently large, we finally arrive at the estimate 

(7.13) C E h,-ld II/2-lolE,lO D < C(C*)h2r-2 + IS. 

By a simple kickback argument, (7.11) follows from (7.12) and (7.13). It now 
remains to show 

(7.14) h hy2r2dJN/2IIG'IlrD Ch2r-2. 
j<J-2 

Using the representation (2.5) we have, for G', 

G'(x) = 9(x, y)g'(y) dy= - 9(x, y) ajg(y) dy. 

Differentiation under the integral sign and integration by parts give 

DOG'(x) = f aDj9(x, y)g(y) dy. 

For j < J1 and any x E Dj we have that dist(x, supp(g)) > cdj. Thus, Holder's 
inequality and estimate (2.6) yield 

IDA'(XI <Cdj-N+2 1#11 

and, hence, 

j| |rD) S d llLI(TO)' 

By Schwarz' inequality and the previously obtained estimate IILI ,(T0) < C, we have 

||G ||r,Dj CJ 

Inserted in (7.14), with]l as before, for fixed a > 1/2, this gives 

J 

E hj2r-2dJ./2IJIG,IlrD < C E h2r-2dl-r 

j<J-2 J =ji 

J 

Ch2r-2 E dJa(2r-2)+l-r 
- Ch2 .2 

i =jl 

This shows (7.14). In order to complete the proof of Lemma 7.3, we note that in the 
case a = 1/2 all terms in the last sum equal 1. Estimating the number of terms, we 
obtain the final bound Cln(h-l)h2r-. O 

8. A Negative-Norm Estimate. In this section we shall prove a negative-norm 
estimate referred to in Sections 9 and 10. The result is well-known from, e.g., 
Bramble and Osborn [3], but will be proved here for completeness. However, we 
shall first show the following result on approximation properties of the spaces 
Sh(u'). 
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PROPOSITION 8.1. Let the domain Q, the bilinear form A, and the family of 
finite-dimensional spaces Sh = Sh(r, x0, a) be as before. Moreover, let a' be a subdo- 
main on Q with C' boundary 8a'. Then there is a constant C, and for each given 
v E L1(J') a Xh E Sh(Q') such that the following holds: If j < J1, D' c D" c (a I n 

Bj-1(xo)), dist(D', Q' \ D") > c1dj, 1 < p < so, 0 < I < 1 < m < r, and if v E 

Wpm(D"), then 

(8.1) ||v - XhllWp/(D') < Ch7IIVIIWP(D"). 

In particular, if v E Hr(%), then 

(8.2) IIv - XhIl,v < Chr-lIIvIIr,Q - 

Proof. There exist (cf. Eriksson [51) an extension operator E: L1(a') -* L1(RN) 
and constants C and cE such that, for x E S2', 

IIEVII wp-(Bd(x)) -< Cllvll wp (B,.Ed(x) n Q,)- 

Let Xh approximate Ev as in Proposition 4.2. Let T' be an element of the partition of 
Q' induced by Ah. Following the proof of Proposition 4.2 given in [5], we obtain the 
estimate 

(8.3) |iv - XhllIW(,) s< Cdiamml(T)IIvIIW..(o ,), 

where T' c E Ah, and where O,, is a neighborhood of T' in Q2' having diameter of 
order hi. Note also that, by the choice of Jl, we can assume that condition (4.7) 
holds for 0,,. But then estimates (8.1) and (8.2) are easily derived from (8.3) by the 
same means as we earlier obtained (4.8) and (4.9). 0 

Proposition 8.1 will be used in Sections 9 and 10. In particular, (8.2) implies the 
desired negative-norm estimate: 

THEOREM 8.2. Let the domain Q, the bilinear form A, and the family of finite-dimen- 
sional spaces Sh be as before. Moreover, let 1' be a subdomain of Q with C?? boundary 
a a. Then there is a constant C such that, for u E H'(U') and uh E Sh((Q') its 
A1 u-projection 

(8.4) IllU - Uhll -r?2,Q' <Ch2r2 lllIr Q 

Proof. Our task is to show that, for some constant C and any w E C?(Q'), we 
have 

(8.5) (U - Uh, W)0 
c Ch2r IuIIr,'W11IIr-2,Q' 

Define Wby 

(8.6) A(v, W)U, = (V, W) / V E H''), 

and recall from Lemma 2.2 that 

(8.7) || W11r ,Q< C11WIlr_2,0' 

By the definition of uh and the continuity of AQ, we have, for any Xh E Sh(Q), 

(8.8) A(u - Uh, W)O =-A(u - Uh, W -Xh)X < ClU -Uhll,lUIIW -XhllIQ'- 
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By (8.6), (8.8), and the standard H2(Q') estimate 

IIU - UhIIllQ < C inf IIU - XhII1,Q'" 
Xh GESh (Q') 

easily obtained from the coercivity and continuity of AQ, and the definition of U,h 
we have 

(U - Uhl, W)Q = A(u - Uh, W)Q' 

< C inf sIIu - Xhll,Q' inf W) 11 W XhII11,0v 
X h E=Sh (2) Xh rESh (& 

The desired estimate (8.5) then follows by (8.2) of Proposition 8.1 and by the 
regularity result (8.7). O 

9. High-Order Convergence for u Only Locally in W0r. Here we shall relax the 
regularity assumptions on u away from the point x0 and show that O(h2r2) 
convergence of (u - uh)(x0) can still hold. This will be done by localizing the 
arguments used in Sections 5 and 6 to a neighborhood go c Q of x0. A pollution 
term in a so-obtained local estimate will be estimated using Theorem 8.2. 

Since we consider also the case when x0 is close to, or even on the boundary ag, 
we shall have to introduce for m a nonnegative integer and for Q' c Q, the following 
special negative norm: 

I|jV||-m,Q' SUp (U,W) IIVII* 
~~w e C(2) ||W||t 

supp(w) n Q\Q?' =0 

Obviously, for LO c L" and m' > mi", we have 

||V||_ %a,Q< ||v||-m",Q" 

and our new norm is related to those defined in Section 1 by 

||V||_t,&0t < |livl 0m,a < |||V|||-m,'- 

Besides, if a., c 2 or m = 0, then 

iVfI|,Q' = |lUll-rn, 

We are now ready to state the announced result in precise terms. 

THEOREM 9.1. Let the domain Q , the bilinear form A, and the family of finite-dimen- 
sional spaces Sh = Sh(r, xo, a) be as before. Let Q? be a subdomain of Q with 

dist(xo, L2 \ i) = c0 > 0, and let m > 0 be an integer. Then, for given a with 
(r - 2)/(2r - 2) < a < 1, there is a constant C such that, if u E Wr(g0) and 

Uh E Sh(g0) satisfy 

A(u - Uh, Xh) = 0 VXh E Sh (Q) 

then 

(9.1) I(U - Uh)(X0)f I Ch22llUll .(0) + CIlu - Uhllm O. 

In particular, if u E Hr and Uh E Sh is its A-projection, then 

(9.2) f(u - Uh)(XO)I < Ch2r2(2IuIIwr(so) + IIulIr). 

If ai = (r - 2)/(2r - 2), then (9.1) and (9.2) hold with C replaced by Cln(h1). 
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Remark. The constant C in (9.1) and (9.2) depends on co, but is, in fact, 
independent of xo. 

Below we present two lemmas which will be used in the proof of Theorem 9.1. 
These lemmas are proved at the end of this section. For Ago we shall use the shorter 
notation AO. In the proof of Theorem 9.1 we shall estimate the two terms 
(U - Uh)(xo) and (Uh - uh)(xO), where Uh E Sh($20) is the AO-projection of U 
= u o. The term (U - Uh)(xo) will be estimated following essentially the proof of 
Theorem 5.1. However, for this we shall need the following analog of Lemma 6.2: 

LEMMA 9.2. Let Q?0 be as in Theorem 9.1 and have a C?? boundary a$2 , and let jo 
be the smallest integer for which io c Q?0, where gio = B1o n 2 as before. Set D" = 
Q20 \ $2 and D' = 2\0 \$2o? Then there is a constant C such that, if G E Hr(D") Jio ? 2 go+1 
and Gh E Sh(Q?) satisfies AO(Xh, G - Gh) = 0 VXh E h(O ), such that Xh = 0 on 
S1? \ D", then 

(9.3) JIG - GhIIlD < Chr1 IGIIr,D" + CIIG - GhlO,D"' 
In order to estimate the term (Uh - uh)(xO), we shall use the following result: 

LEMMA 9.3. Let $20 be as in Theorem 9.1, and let m' > 0 be an integer. Then there is 
a constant C such that, if Vh E Sh(Q) satisfies A(vh, Xh) = 0 VXh E Sh(j0), then 

(9.4) IVh(Xo)l < Cl Vhll-m'. QO 

Proof of Theorem 9.1. We may assume, without loss of generality, that ago is 
smooth. Set U = u/Io and let Uh EC Sh(Q) be its AO-projection. Then on $20, 

(9.5) u - uh = (u - U) +(U- Uh) +(Uh -uh) = + el + e2 

We first claim that 

(9.6) iel(xo) I = |(U - Uh )(xo) | Ch2r2iiUiiwr(Qo), 

where C is to be replaced by Cln(h-1) in the case a = (r - 2)/(2r - 2). This is 
proved in the same way as Theorem 5.1, but, instead of the subdomains OJ+1, DJ, 
DJ-1,- . . of Q, we now consider Q?2 subdivided into the domains $2J+1 DJ,... . Djo+1 
and D'. The approximation properties needed for the spaces Sh(Q?0) are given by 
Proposition 8.1, and the required counterpart of Lemma 6.2 for the domain D' is 
given by Lemma 9.2. 

We shall next show that 

(9.7) 1e2(xo)I < Ch2r2IIUIIr,Qo + CIIu - uhII m o. 
Since U = u on go, and since 1 11r,? < CIl * IIWr(uo)l (9.7) together with (9.5) and 
(9.6) will show (9.1). In order to obtain (9.7), set m' = max(m, r - 2) and note that, 
for any Xh E Sh2(g2), we have 

A(e2, Xh) = A(u - Uh, Xh) - Ao(U Uh, Xh) = 0 - 0 0- 

Hence, by Lemma 9.3, 

1e2( XO)1l < Cile211-mQo00 

Using fiist the triangle inequality and the fact that U = u on $20, and then that 
j. *jjl m is dominated by both * I*m,qo and . III*r?2,Q? we have 

IIe2IKM ',Qo < iiU - UhllIm,Qo + IIIU - 
UhIII|r+2,Qo 
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From here the negative-norm estimate (8.4) settles (9.7) and, thereby, (9.1). In 
particular, if u E H' and Uh E Sh is its A-projection, then (9.1) with m = r - 2, the 
norm inequality 11 Im Q? < * III m and the negative-norm estimate (8.4) together 
show (9.2). This completes the proof. O 

Remark 9.1. Since (9.1) is entirely a local estimate, it can be used to obtain 
estimates similar to (9.2) also in other situations where high-order negative-norm 
estimates for u - Uh are known, such as, in connection with various procedures for 
treating the Dirichlet problem. 

Proof of Lemma 9.2. We introduce for the proof domains D(i), j = O,... , 4, such 
that D' = D( 1) c * ... c D(4) = D " and with dist(D(i), S02\Di+1)) > c > 0. 
Following the proof of Lemma 6.2 given in [5], we shall first show that the desired 
estimate (9.3) is implied by the statement: There is a constant C such that, if 
v E H1(D(3)) and Vh E Sh(S1?) satisfy AO(Xh, V - Vh) = 0 VXh E Sh(20) such that 

Xh = ? on 2\ D(3), then 

(9.8) IIV - VhII1,DO < Ci|Vii1,D(3) + Cliv - 
VhiiO,D(3). 

For, set v = G - Xh and Vh = Gh - Xh, where Xh E Sh(g0) approximates G. Then 
by (9.8) and Proposition 8.1, 

JIG - GhII1D = IG- Xh -(Gh - Xh)D11,D' < CIIG - XhII1,D(3) + CiG - GhIio,D(3) 

< Chr-1IIGIIr,D + CiG - GhIIo0D", 

which shows (9.3). 
For the proof of (9.8) we let q be a smooth cutoff function, vanishing in a2? \ D 

equal to 1 on D(2), and with wLq"l < C,,. We use the notation qV))h for the 
A0-projection of 71v. By the triangle inequality, we have 

I|V - Vhi1l D' <||v -(V V )hl1 ,D' +i-qV)h - Vh 1D= I + I 

Using the boundedness in H1(Q0) of the AO-projection and the properties of q, we 
have 

I' < CI[qVIJ1iQo < CIIVI11,D(3). 

In order to estimate I", we need the following result: There is a constant C such 
that, if Wh E Sh(g0) satisfies AO(xh, Wh) = 0 VXh E Sh(a0), such that Xh = 0 on 
S?\D(2) then 

(9.9) iiWhII1,D' < CIIWhIIOiD(2). 

Using (9.9) with Wh = ('qv)h - vh, we have 

I < Cl(qv))h - VhIIO,D(2) < ClIv - VhiiO,D(3) + ClInV (qV)hII0,o0, 

where we have also used the triangle inequality and taken larger domains in the last 
step. Again using the boundedness of the AO-projection and the properties of q, we 
have 

1k|V - (v)hIIO,o < ||V - (qv))h111,0o < CllqVII1,0o < CiViI1i,D(3) 

which completes the proof of (9.8). 
We shall now show (9.9). Let D' and D"' be mesh domains on go such that 

D' c D', S02 \ D(1) c D ", and dist(D", D') > c > 0. Let n be a new smooth cutoff 
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function equal to 1 on D^, vanishing on D", and satisfying II II 7w < C.. As in the 
proof of Lemma 6.2 given in [51, we have 

CAIIWhI 2D' < CAII71WhII2 Q? < AO(-qwh,, Wh) = Ao( 2Wh, Wh) + I, 

where I can be estimated by 

iC 112WhI,s00 + CI,Wh012 A 11qW CIIWhII, D(2) 

Hence, 

IIWhII2D' < CAo(n2wh, Wh) + CIIwhII D(2)- 

Using the discrete A*-harmonicity of wh and Proposition 4.3, we have, for some 

Xh'E Sh(Q?), 

AO(q2wh, Wh) = Ao( q2Wh - Xh I Wh) 1 ChIIwhl,D1). 

Now let D and D ' be new mesh domains with D(1) C D', f 0\D(2) c D ', and 
dist(D, D"') > c > 0, and let n be a new smooth cutoff function equal to 1 on Df, 

vanishing on D ', and satisfying I I I w < C,. Set Dh = ?\ (D, U D,'). Repeating 
the above arguments then shows that, for any Xh E Sh(Q0) such that Xh = 0 on 
Q? \ D we have 

IIWhL,D10) < CA0(qWh - Xh, Wh) + CIIwhII,D(2). 

By Proposition 4.3 we have, for a suitable choice of Xh, 

AO(ir2wh - Xh, Wh) < ChIIwhIIlD* 

Collecting the above estimates and using an inverse estimate on Dh, we have 

IIWhIIiD' 1 Ch2 IwhI I,Dh + CIw'hII D(2) < C| D2), 

which shows (9.9) and completes the proof of Lemma 9.2. 0 
Proof of Lemma 9.3. Given an integer m' > 0, we shall prove the existence of a 

constant C such that, for vh E Sh(S0) satisfying A(vh, Xh) = 0 VXh E Sh?(Q?), we 
have 

IVh(Xo)l <' CIIVhll-*mO.Q?- 

Recall the definition Djk = Dk U ... U Dj+k. Set m = max(m', [N/2] + 1), where 
[N/2] denotes the integral part of N/2, and let 1 be the smallest integer for which 
Dm +3 C Q?. With b = D' we shall show the desired estimate in two steps: namely, 

(9.10) IVh(XO)l < CIfVhlllb, 

and 

(9.11) IiVhjjl D . 
CIIvhjIrm' o. 

Set D = D,3. We shall use the fact that D is well separated from the point xo, so 
that the mesh size on all of D is of order h, and dj < C for each Dj c D. For the 
proof of (9.10) and (9.11), we shall use the following proposition: 

PROPOSITION 9.4. Under the assumptions of Theorem 9.1 and with / and m as above, 
there is a constant Csuch that,if Eve Sh(O 0) satisfiesA(Vh, Xh) = 0 Xh E Sho(D +2 
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then,fork = 1,.. .,m + 1, 

(9.12) IIVht11,Dk 4 ChIIvhIl,D, k+1 + CIjVhllm,D, k+1. 

Estimate (9.12) also holds for Vh satisfyingA(xh vh) = 0 VXh e 

Before proving Proposition 9.4, we use it to first prove (9.11) and then (9.10). 
Repeated use of (9.12) with k = 1,. . . , m + 1 shows that 

(9.13) tIVhIll,Dl < Chm?lIIVhIIl,DP?2 + ClI Vhllm + 

Let Dh be a mesh domain such that Dm 2 C Dh C D. By (4.5) we have 

+iXiD +2 < Ch -m1 -mlh D C--lllVhll* 

and, hence, since m > m' and D c 

(9.14) livhl, ||_|,1<CiXlmD<Cihlm'Q (9.14) lIV~hII1lb = IIVhIi1,D1 < Cit Vhl-mbD < Cit Vhl*~O 
which is inequality (9.11). 

In order to show (9.10), let Zh E Sh?(l- 1) be equal to Vh on Q and satisfy 
IIZhIl,b D< Cjjhv41 D. To see that such a Zh exists, let D' and D"' be mesh domains 
such that 2 c D,, 20\ Q c D,", and with dist(D , D"') > c > 0, and let a be a 
smooth cutoff function equal to 1 on D , vanishing on D ', and satisfying Inij wr < . 

Take Zh as the function Xh which approximates 'qVh, as in Proposition 4.3. The 
triangle inequality and dy1 < C then give 

IlZhlll,b < '11'Vh - Zhlll,b + IIl_Vhlllb 

< Ch,d7 ||VhjI1D + Chid7 211VhIlo,b + Cd, llVhIl, b < CIIVh,ljlDb 

As before, let To be an element for which xo E T0. Using the inverse estimate (4.1) 
and the assumption that diam(T0) is of order hl7(l -), we have 

(9.15) lVh (xO)t = tzh(xO)t < Cdiam-N/ (ro0) tzhilto s< Ch N/I( )lzhto,O.- 

Duality gives 

(9.16) tIZhtto,, = sup(zh, g)hNA>2-2x) 

where the supremum is taken over all g e COO(TO) normalized so that lugll0 
h-NA2-2a). Let G e H1 be defined by 

A(v, G) = (v, g) Vv E H1, 

and let Gh E Sh be the A*-projection of G. Let Xh E S,?(Q) equal Gh on 2 and 
satisfy 

jIGh - Xh111,b < CIIGh11i,b- 

The existence of such a Xh is an easy consequence of Proposition 4.3. Since Vh is 
A-harmonic on Q?, and hence zh on 2,, we have, by the definition of Xh and Gh, 

A(zh, G) = A(zh, G - Xh) = A(Zh, G - G) + A(Zh, Gh - Xh) 

=A(zh,, G Xh)- 

Hence, by the definition of G and the estimates on G, - Xh and Zh, 

(9.17) (Zh, g) = A(Zh, G) = A(Zh, Gh - Xh) < CttZh,i,btlGh - Xh1i1,b 
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where we also used that either Zh or Gh - X h vanish outside D. Now note that Gh 

satisfies 

A(xh,Gh) = A(Xh, G) = (Xh g) = 0 VXh E (Q\Tc)- 

Hence, Proposition 9.4 applies, and we obtain, as in (9.14), 

(9.18) JJGhIIi,b < CJJGhII-*m,Dz 

We shall now use the fact that the last negative norm is dominated by the Ll-norm 
z 

over D. Namely, since m > [N/2] + 1, the Sobolev inequality (cf., e.g., [1]) 

IIWII|L. < Cll W||[ N/21+ 1 < CIIWlW||m 

yields 

IIGhII:m,b= SUp (Gh W) JJGhIILj(D)JJWJJLo 
JIG ~sup <1 SUP 

(9.19) weC?&S) IIWIIm wEC?(2) IIWIIm 
supp(w) n2\D D0 

< C|IGh,jL1(D) CjGj|Lj(D=) + CIIG - 
GhIIWj1(D=) 

where we have also used the triangle inequality and changed to a sharper norm in 
the last step. Using Lemma 2.3 and recalling that g, as defined above, has bounded 

Li-norm, we at once have 

jIG| jL1(D) < ClIgIlL1(T0) < C- 

For the other term we use Lemma 5.2 to obtain 

{ l+m+3I } 

JIG - GhIwb= JIG - GhIw(P+) h-r+l V2h 1'jG -G hl-G|l W1(D) = h|GGIIWj1(D +) 4< z+ m+3 h Wil- ||-^ 1(pj)J 
j =l-m-3 

< Ch-r+lln(h-l)h2r2 C. 

Collecting the above inequalities, we have shown that IIGhli,b < C, and, hence, by 
(9.15)-(9.17), obtained the desired estimate (9.10) and thereby proved Lemma 9.2. 
0 

Proof of Proposition 9.4. We shall prove that if Vh is discrete A-harmonic in D 

then, fork = 1,...,m + 1, 

lIVhlll,Dk < ChIIVhIIl,Dk +l + CIIVhllIm,Dk+1 . 

Fix k and introduce domains Di such that 

Dk = D-' c DO C D' c ... cDm-lcDm=D k+l 

and with dist(D', Q \Di+') > c > 0 forj = -1,...,m - 1. By Lemma 7 in [5] (with 
v-0) the H'-norm of Vh over Dj is dominated by Cdj-l' times the L2-norm of Vh over 
a slightly larger domain. Using the same arguments step by step, we here obtain 

IlVhIIl,D, 1 CI VhIIO,Do. 

We shall next show that, forj = 0,... ,m - 1, we have 

(9.20) IfVhI j.,DJ < ChIIvhIIl,Dj+l + CIIVhll(j+l),DJ+I. 
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Repeated use of (9.20) for thesej's yields 

iiVhIIo DO < ChIIVhIIlDrn + CIIVhII2-m,Dn` 

Since 1 DIlo D?= * I we will then have obtained the desired estimate (9.12). 
In order to show (9.20), fix j and consider a domain D with Di c D C Di+', 

dist(Dj, Q \ D) > c > 0, and dist(D, Q \ D"+1) > c > 0. Let -q E C ' (RN) equal 1 
on Di, equal 0 on \D, and satisfy wjnjj m < C,. Moreover, let q satisfy the 

boundary condition 
N 

an i aij ni=0 onag, 

where n = (ni) is the exterior normal to ag. That such a function q exists follows 
from the ellipticity condition (1.3). For let q' satisfy all requirements on q except for 
the boundary condition, and let o be a smooth function vanishing on au, with 
nonvanishing gradient on supp(q') and gradient parallel to n on a n supp(-q). 
Then, with aj = a/axj, the function 

FN~~~~~4 , ,,j-laij aiw ajq' 
1 j 1 ij ai a 

satisfies all requirements, including the boundary condition. 
Now, let w E C(92) with supp(w) n Q\ Di = 0, as in the definition of the 

negative norm 1 11*j Di. For such w define W by 

A(v, W) = (v, w) Vv E H1. 

We shall integrate by parts and use the boundary condition on q. We have 

(Vh, w) = (qVh, W) = A(-qvh, W) 

N a aw 
=A(Vh. W + E a.j .vh dx 

L i,j1 'a i ax1 

N Vh aX ai W dx + f ai # VhWdx 

= A(vh, ?1W) + I, 

where 

I < CIIvhII-(j+Il),Dj+llIWllj+2- 

Since vh is discrete A-harmonic, we have, for any Xh E Sh(D'+1) 

A(Vh, "W) = A(Vh, W - Xh) < CIIVhjll,Dj+ljljW - XhIl1,Dj+' 

By the approximation properties obtained in Section 4, there is such a Xh with 

|XW - 
Xhlll,Dj+l 1< Chll W112 < Chll Wll j+2- 

Since Lemma 2.2 shows that IIWIIj+2 < CIIwIIj, we have thus obtained 

(Vh, W) < C( hIVhIll,Dj+l + 1lVhll-(j+l),DJ+l )IlwIj, 
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with C independent of h, Vh, and w as above. Since this is the same as (9.20), and 
since the same estimate could be obtained for Vh being discrete A*-harmonic in 
D + 2, we have thereby proved Proposition 9.4. O 

10. High-Order Convergence for Derivatives for u Only Locally in W.. In this 
section we shall prove a counterpart of the localized estimate for (u - uh)(xO) of 
Section 9 for the gradient and show that O(h2r-2) convergence of V(U - uh)(xO) 
can also hold when u is only locally in WO,. 

THEOREM 10.1. Let the domain 2, the bilinear form A, and the family of finite- 
dimensional spaces Sh = Sh(r, xo, a) be as before. Let CO c a and assume that 
dist(xo, 0 \ S2?) = c0 > 0. Moreover, let m > 0 be an integer. Then, given a with 
1/2 < a < 1, there is a constant C such that, if u e Wo,(Q?) and if uh E Sh(Q?) 

satisfies A(u - uh, Xh) VXh E Sh2(20), then 

(10.1) |v(U - Uh)(XO)I s Ch2r21U//wJ(Io) + CIIU - Uh11Im no- 

In particular, if u E Hr and Uh E Sh is the A-projection of u, then 

(10.2) | V(U - Uh)(xO)I < Ch2r-{ IIUII| (0) + IIUlIr} 

If a = 1/2 then (10.1) and (10.2) hold with C replaced by Cln(h'). 

Remark. The constant C in (10.1) and (10.2) depends on c0, but is independent of 
xO. 

For the proof of the theorem we shall need the following lemma. 

LEMMA 10.2. Under the assumptions of Theorem 10.1 and given a nonnegative 
integer m', there is a constant C such that, if Vh E Sh(i0) satisfies 

(10.3) A(vh, Xh) = 0 VXh E Sh (g )' 

then, for any aj = alaxj 

(10.4) |ajVh(XO)| ~< C11Vh11-*m Q?- 

We give the necessary details of the proof of Lemma 10.2 after having shown 
(10.1) and (10.2). 

Proof of Theorem 10.1. We may assume, without loss of generality, that ago is 
smooth. We shall prove (10.1) and (10.2) with V replaced by any a>. Set U= uIao 
and let Uh E S'h(Q2) be the A0-projection of U. Then on go 

(10.5) aj(u - uh) = aj(u - U) + aj(U- Uh) + aj(Uh - uh) = 0 + a8e, + aie2- 

We first claim that 

(10.6) |ael(xo)l S Ch2r-2Jl Ul Wr (0?), 

with C replaced by Cln(h'1) in the case a = 1/2. This is proved in the same way as 
Theorem 7.1, but with the modifications described after (9.6). We shall next show 
that 

(10.7) laRe2(xo)I < Ch2r211U11r, + CIIU - Uh11_mQ0o. 
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Since U = u on 0O, and since 11 - jI,.go < Cjl * 11 w' (o), (10.7) together with (10.5) and 
(10.6) will show (10.1). By taking m = r - 2 in (10.1), using < * IQ * III-inA 
and the negative-norm estimate (8.4), we obtain (10.2). 

In order to show (10.7) we first note that e2 satisfies (10.3). Therefore, with 
m= max(m, r - 2), we have 

|aie2 (XO ) I -<. CIIe2II-*mQo 

Using first the triangle inequality and the fact that U = u on 20, and then using the 
fact that go II*mt Q is dominated by both III - III-r?2,go and I IIg*m,go, we have 

IIe2II-m ,o < |IIIU UhIII-r+2,Q? + I|U - UhI Im Q? 

From here another application of the negative-norm estimate (8.4) shows (10.7) and 
completes the proof of Theorem 10.1 o 

Remark 10.1. The same comment as in Remark 9.1 applies to estimates (10.1) and 
(10.2). 

Proof of Lemma 10.2. In view of the previously obtained estimate (9.11) for a 
function Vh satisfying (10.3), it is sufficient to show that 

|ajVh (Xo )| < CIIVhlll,b' 

where b = D' as in the proof of Lemma 9.3. Thus, let Zh E Sho(21-1) equal Vh on Q/ 
and satisfy 

IIZhII1,b < CIIVhlli.bD- 

By Lemma 7.2 we have 

Ia1Vh(Xo)l 
= lajZh(XO)l < Csup(ajzh, g) = Csup(zh, g'), 

where the supremum is taken over all g E C' r) (T) 
- 

xo) with 

diamN/2(Tc0) lgllo + diam(+?2)/2( To)I/gIIi < 1, 

and where we have also integrated by parts and put g' = -ajg in the last step. 
Define G' by 

A(v, G') = (v, g') Vv E H1, 

and let G' e- Sh be its A*-projection. LetXh E SSh(QI) equal G' on Q2+ 1 and satisfy 

JIG, 
- 

XhIIl,b < CIIG'hll,b- 

Since either Zh or G-Xh vanish outside b, we have 

(Zh, g') = A(Zh, G') = A(Zh, G ) = A(Zh, Gh - Xh ) CIIzhIlbIIGhIlb. 

It now remains to show that the last factor can be bounded by a constant. By (9.18) 
and (9.19) we have 

IIG1II1b < CIIG' IIL1(D) + hG GWhIw1(D) 

Using the representation 

G'(x) = f 9(x, y)g'(y) dy = f a8(x, y)g(y) dy 
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and estimates (2.6) and (7.5) for Wand g, respectively, we easily obtain 

|G' | GD|) -< C 

Finally, by Lemma 7.3, we have 

||G' - G,'J1 W1(D) = I G 
- 

{ I+m+3 G 

< h -r+ l i E hyr- l || G'-Gl l( 
j=I-m-3 

< Ch r+ln(h-)h2r2 < C 

which completes the proof of Lemma 10.2. O 

Remark 10.3. Improved convergence holds also for higher-order derivatives of 
u - uh at x0, provided the mesh is correspondingly further refined. 

Remark 10.4. If u is in WOO, 0 < m < r, the estimate 

l(U - Uh)(XO)I l Ch? IIUIIW 
can be obtained for suitable mesh-refinements. 

Remark 10.5. In view of (5.2) and (9.2) and the corresponding more precise 
estimates (7.1) and (10.2), it is natural to ask if one can further relax the requirement 
on u and retain the O(h2r-2) convergence at x0. It is clear from approximation 
theory that we cannot essentially weaken the norm on u near xo if these estimates are 
supposed to hold for any a > (r - 2)/(2r - 2) and a > 1/2, respectively. On the 
other hand, it seems reasonable to believe that by a more sophisticated analysis, one 
could replace the norm on u by one which changes continuously from a WOO-norm 
near x0 to an Hr-norm away from x0 in some appropriate way. However, we have no 
proof of this. Neither have we investigated if O(h2r-2) convergence can be obtained 
at x0 for some degree of refinement if u is globally in Hr and locally in WOO with 
m < r. 
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